

2019
[API Specification]
[API for integrating Voice2Med with HIS]

Introduction
This specification describes API interaction principles for filling template forms using Voice2Med software. The introduction describes access technologies and contains a schematic diagram of API interaction. Other sections feature concrete ways of using Voice2Med API to fill forms.
This specification is aimed at hospital information system (HIS) developers that need to integrate HIS with Voice2Med software and can be used as a guide.
[bookmark: _msxkjb56y1br]Please note that document version [v.1.1] is not final. API can be changed.

Used technologies
Voice2Med API uses WebSocket full-duplex communication protocol for integration with HIS. Using full-duplex communication means that after Voice2Med connects to HIS, Voice2Med (acting as a server) can notify HIS about the results of recognition.
As most operations belong to synchronous request model, the option of using REST API for such requests is also provided.
[bookmark: _u2u1gb1zx58a][bookmark: _GoBack]

[bookmark: _2c60slyz7khn]Requirements and restrictions for direct connection to the server
This specification mainly concerns connection to the Voice2Med client side using localhost:33999 and localhost:39256 ports. In this case, sound acquisition, sound transmission to the server and some other operations are performed by Voice2Med client. In some cases, it is possible to directly connect HIS to the server. This section describes requirements and restrictions for the direct connection.
[bookmark: _uhsmvr62cv9x]Connection ports
If you connect to the server directly, you should use the ports different from the client ports.
	
	Client port
	Server port

	WebSocket
	localhost : 33999
	192.168.x.x : 34000

	Rest
	localhost : 39256
	192.168.x.x : 39255

[bookmark: _bxp2n2r79cdj]Client identifier
If you connect to the server directly (not using Voice2Med client), it is necessary to send client identifier in cookies. The identifier is a GUID sent as a string. The identifier should not be changed during application functioning and should remain the same from launch to launch. The client version and application name should be also sent in cookies.

	Key
	Example value
	Description

	DESKTOP_ID
	a2906915-e21c-4747-971b-8b82b43c0d2a
	Generated by the client once during the first software launch

	VERSION
	0.3
	Temporarily not used. At this moment you need to send 0.3 value.

	CLIENT_APP_NAME
	QT_Voice2Med_Client
	Text with application name

[bookmark: _agk9h0h7wqev]Code offsets of messages sent through API
Client-server messages have an offset of 100. For example, to pre-import a catalog, you need to send message with code 101, not code 1 (as in case of client connection).
Server-client messages have an offset of 200. For example, the notification about changing the recognition mode will come with code 200, not code 0 (as in case of client connection).
[bookmark: _z2x4lnzg4j2d]Choosing language model
At the start of recognition process, Themeld field should be filled (unlike in case of client connection). For more information about filling the field, see Starting form recognition subsection.
[bookmark: _8orcnj6e8bob]Additional messages
If you connect to the server directly, you will get messages not described in this specification. Some messages are mandatory and useful (such as messages about sending the sound or absence of license), some of them are useful but not mandatory (speech synthesis data), some can be ignored.
[bookmark: _c4kwatwikeju]Sending sound from microphone to the server
If you connect to the server directly, the tasks of sound acquisition and sending the sound to the server are performed in your application. The sound should be acquired with the sampling frequency of 16 kHz.
Then the sound is sent to the server by WebSocket connection in binary format.

[bookmark: _3t6ykbjmesyd]User notification about an event (text message)
User can receive messages from the server side. You can ignore these messages or process them and show them to the user.

Example of a message:
{
 "MessageType": 5,
 "Data": {
	"Message": "Message to the user",
	"Type": 3,
	"Action": 1
[bookmark: _q2gb04w5bxcj] }
[bookmark: _5r4lvtlcxm61]}

	Type: type of a message

	Information message
	1

	Warning
	2

	Error
	3

	Action: additional action

	Does not exist
	0

	Reconnect or close the application (appears when you do not have application license or in case of another critical error).
	1

	Stop recognition process (appears when you do not have appropriate license).
	2

[bookmark: _jolrx3vht0bu]Getting information about license
When you connect to the server, it returns information about license. Use this message to check the application launch capability or to learn more about your license status.
Example of a message:
{
 "MessageType": 7,
 "Data": {
"ProtectionData": {
 "LastUpdateTimestamp": "2019-01-09T17:10:28.1875096+03:00",
 "CountOfCapturedLicenses": 0, 	// [deprecated]: not used
 "CountOfLicenses": 1, 	// [deprecated]: not used
 "DaysLeft": 1, 	// Number of days left
 	"LaunchCount": -1, 	// [deprecated]: not used
 	"LicenseType": 1, 	// 0 - undefined, 1 - Trial, 2 - permanent
 "Type": 2 	// 0 - undefined
 	},
	"Type": 0, // [deprecated]: interested only in 0 type messages
	"ComponentId": "endoscopy_2.3.95" // theme name or empty string
[bookmark: _n8b3wp28u2nm] }
[bookmark: _qloa5s5uwfux]}

[bookmark: _alf29u9mxbeb]managing speech synthesis parameters
Example of a request for the list of available voices:
{
 "MessageType": 21,
[bookmark: _7jf1ax43u8s5] "Data": {}
[bookmark: _ixlgivm08b4d]}
Example of a request for installing additional TTS parameters:
{
 "MessageType": 23,
 "Data": {
	"SelectedVoice": {
 "Name": "Alexander"
	},
	"Speed": 1.4
[bookmark: _a9wupgcp2l8z] }
[bookmark: _8zamve6q9otc]}
Example of getting server information about speech synthesis component status (same as status message):
{
 "MessageType": 22,
 "Data": {
	"VoiceList": [
 {
 "Name": "Alexander"
 },
 {
 "Name": "Julia"
 }
],
	"SelectedVoice": {
 "Name": "Alexander"
	},
	"Speed": 1.4,
	"State": 0
[bookmark: _z7747jco8de7] }
[bookmark: _bczeah7cpqty]}
Sound from TTS comes in binary format with the frequency of 22050.

Schematic diagram of interaction
To enable the form filling mode, HIS should connect to Voice2Med through WebSocket (localhost:33999 by default) and then send the message containing metadata with the form description (see more in Form initialization subsection). After successful processing of metadata, the client (HIS) will receive the notification about changing the currently active form. Form initialization does not lead to the change of recognition mode. If the voice activation mode was active from the start, it will not change. If the continuous recognition mode was active, it will automatically change to form filling mode. You will receive a respective message.
If metadata processing fails, Voice2Med will send a respective message (object: Message<ErrorInfo>)

[image:]
Figure 1: Interaction of Voice2Med with HIS
In this mode, Voice2Med uses form grammar to recognize the text pronounced by an operator. Then Voice2Med sends the messages to HIS describing the fields to be filled and the data for filling the fields. After filling all fields, HIS informs Voice2Med about completing the form filing task and receives notification about changing the recognition mode in response.

[bookmark: _2txra1athau4]Voice2Med operation modes
Currently the system supports three modes of speech recognition:
1) Voice activation mode. This is a default mode that allows users to switch to the different mode using voice command.
2) Continuous recognition mode. This mode is intended for filling simple text documents. When it is enabled, the active window in focus receives the recognized text in the form of system key logs.
3) Form filling mode (standard). This mode is intended for filling a concrete form using field metadata that was previously sent to Voice2Med. After the field name and value are recognized in user’s speech, the system sends the respective notification to the application through WebSocket and 33999 port.
This specification describes standard form filling mode.
4) Form filling mode (Voice Wizard). In this mode, user should fill fields in a certain order. The application pronounces the name of a current field and waits for the user to pronounce its value (without the name). This mode speeds up form initialization, increases the accuracy of speech recognition, and ensures sequential form filling.
This specification describes only form filling modes. Please note under which conditions and how Voice2Med switches to form filling modes.

[bookmark: _gg9u05ammyha]Turning on form recognition mode from voice activation mode
Suppose the application is launched, the language model is chosen, and the microphone is enabled. In this case, the following ways of switching to the form recognition mode are applicable:
· Performing the command for form initialization/form choice and then activating recognition mode. First you send the form metadata (or form key, if the form was imported or loaded before that) and then you enable recognition mode by voice (the default command is “Ok, Voco”) or by double-pressing Ctrl.
· Performing starting form recognition command.
[bookmark: _gxhz3knff7ab]Turning on form recognition mode from continuous recognition mode
Suppose the application is launched and the continuous recognition mode is started by voice. In this case, to switch to the form recognition mode, you should perform form initialization/form choice command or starting form recognition command.
[bookmark: _xmdjvyfk05uc]Exiting form recognition mode
To exit form recognition mode, you need to perform finishing form editing command. In this case, continuous recognition mode will be activated.

[bookmark: lolkc6r0g7ah][bookmark: _v21h9aifowh]Message container
Any message sent between Voice2Med and HIS through WebSocket is put into Message<T>, a typed class container. See Message<T> specification below:
	Message<T>

	Class container with respective data

	Field
	Filed type
	Requirements
	Description

	MessageType
	Int32
	Mandatory
	Message type

	Data
	T
	Mandatory
	Data matching the message type

[bookmark: 4u9p8o9jti02][bookmark: _ghxosxujevp5]Catalog of message types
[bookmark: _rsre97us53nf]Client Server

	Name
	Message code
	Returned synchronizing message

	Request for catalog pre-import
	1
	Server → client, code: 4
or
Server → client, code: 5

	Request for form pre-import
	2
	Server → client, code: 4
or
Server → client, code: 5

	Request for getting the list of cached metadata

	3
	Server → client, code: 3
or
Server → client, code: 5

	Request for getting information about cached metadata by identifier

	4
	Server → client, code: 4
or
Server → client, code: 5

	Request for setting currently active group or element
	5
	

	Starting form recognition command
	6
	Server → client, code: 0
or
Server → client, code: 5

	Finishing form editing command
	7
	Server → client, code: 0
or
Server → client, code: 5

	Request for getting the list of themes (language models)

	8
	Server → client, code: 7
or
Server → client, code: 5

	Request for changing themes (language models)
	9
	Server → client, code: 8
or
Server → client, code: 5

[bookmark: _vhdnm1tl20nr]Server Client

	Name
	Message code
	Returned synchronizing message

	Notification about changing current recognition mode

	0
	

	Notification about value recognition

	1
	

	Notification about focusing on group or element
	2
	

	Returning the list of cached metadata

	3
	

	Returning the description of cached metadata
	4
	

	Error notification
	5
	

	Notification about recognizing several values (in case the field cannot be clearly determined)
	6
	

	Returning the list of available language models
	7
	

	Notification about changing currently active language model
	8
	

	Notification about preliminary results of processing
	9
	

	Notification about command activation
	10
	

	Notification about TTS status
	11
	

	Notification about activation of enabling recognition command
	12
	

	Notification about activation of disabling recognition command
	13
	

Form filling
This section contains information about data types and data communication between Voice2Med and HIS. First subsection provides the list of recognized data types, their short description and the links to respective subsections with examples of field filling. Next subsection describes formats of form metadata and concentrates on form initialization process that comes before form filling.
Another important part of form filling is focus management and element grouping. It is described in the respective subsection.
Next subsections describe interaction with different field types in more detail.

[bookmark: vrjnsehh7j7k]Data types available for recognition

	Data type
	Code
	Description

	String
	0
	Simple text data

	Boolean
	1
	Boolean value (true/false)

	Int32
	2
	Integer

Minimum value:
-2 147 483 648;

Maximum value:
 2 147 483 647;

	Decimal
	3
	Decimal fraction

	Date
	4
	Date

	Time
	5
	Time

	DateTime
	6
	Date and time

	Link
	7
	Catalog or link to the catalog on client’s side (HIS)

	TimeSpan
	8
	Time period, for example:
“One year”
“Five years”
“Four years and seven months”
“Twelve months”
“Eight hours”

	Complex
	100
	Complex field

[bookmark: 7jho5b3dkobr][bookmark: _Starting_form_recognition]Starting form recognition
Before starting voice form filling, it is necessary to send form metadata that will be used for recognition. See class diagram describing the structure of form metadata below:

[image:]
Figure 2: Metadata structure
To send form description (Message<FormMetadata> object), you need to connect to Voice2Med through WebSocket (localhost: 39999 by default) and send this object in JSON format.
	

[bookmark: _a4kmihcywctn][bookmark: _Example]Example
Example of metadata production for the following form:
[image:]
Figure 3: Form with medical data
Below you see full example of the JSON message that you need to send to Voice2Med. The metadata is described by FormMetadata object, that is put into Message<FormMetadata> container.
{
 "MessageType": 6,
 "Data": {
	"Key": "a0bc1744-010c-4414-84e6-acabeff7b517",
[bookmark: _n28455d1xwhn]"Name": "Form №1",
	"Childs": [
 {
 "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
 "AvailableValues": [
 {
 "Key": "0",
 "Value": "Male"
 },
 {
 "Key": "1",
 "Value": "Female"
 }
],
 "Type": 7,
 "Synonyms": [
 "Sex"
],
 "Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
 },
 	{
 	"Type": 1,
 	"Synonyms": [
 	"Insurance status",
 	"Insurance"
],
 "Key": "1d77096e-53eb-48ea-bfad-4ea3bab2b3a7"
 },
 {
 "Childs": [
 {
 "Type": 2,
 "Synonyms": [
 	"Pulse"
],
 "Key": "b5dcd5b9-576a-420b-aea2-b81171a2ee8e"
 },
 {
 "Childs": [
 	{
 	"HandbookKey": "3b00e940-1f75-4bae-ae33-7796dbceb768",
 	"AvailableValues": [
 	{
 	"Key": "0",
 	"Value": "Normal"
 	},
 	 {
 	"Key": "1",
 	"Value": "High"
 	},
 	{
 	"Key": "2",
 	"Value": "Low"
 	}
],
 	"Type": 7,
 	"Synonyms": [],
 	"Key": "ec58154c-28d7-4aaa-953e-7a7fc149ee56"
 	},
 	{
 	"Type": 2,
 	"Key": "7c11c54e-4cef-44f5-b895-2c82383d151d"
 	},
 	{
 	"Type": 2,
 	"Synonyms": [
 	"by"
],
 	"Key": "92e99d18-54e5-4920-89d3-70d589f312e2"
 	}
],
 "Type": 100,
 "Synonyms": [
 	"Blood pressure"
],
 "Key": "06b13fe2-32e6-49a1-b376-ff0237414a6b"
 }
],
 "Synonyms": [
 "Before activity",
 "Before"
],
 "Key": "34041bd0-8fac-4026-ac9f-3ede5dc23f50"
 },
 {
 "Childs": [
 {
 "Type": 2,
 "Synonyms": [
 	"Pulse"
],
 "Key": "8974d016-0669-4b1f-a968-ad124240c2dd"
 },
 {
 "Childs": [
 	{
 	"HandbookKey": "8ecafe5b-a6cf-4576-b423-cd915d25bba3",
 	"AvailableValues": [
 	{
 	"Key": "0",
 	"Value": "Normal"
 	},
 	{
 	"Key": "1",
 	"Value": "High"
 	},
 	{
 	"Key": "2",
 	"Value": "Low"
 	}
],
 	"Type": 7,
 	"Synonyms": [],
 	"Key": "aa2d7231-4176-45cf-bb02-b556a16223b3"
 	},
 	{
 	"Type": 2,
 	"Key": "34110649-7e2d-4f0e-9d19-5c0734c47509"
 	},
 	{
 	"Type": 2,
 	"Synonyms": [
 	"by"
],
 	"Key": "c6e21691-6116-4097-8b87-824f376508a2"
 	}
],
 "Type": 100,
 "Synonyms": [
 	"Blood pressure"
],
 "Key": "af298d98-3f3c-4529-8ed1-0bc2857c6bd8"
 }
],
 "Synonyms": [
 "After activity",
 "After"
],
 "Key": "ea0ac1b8-d91d-4b98-8d63-4f565048ab77"
 },
 {
 "Type": 0,
 "Synonyms": [
 "Description"
],
 "Key": "9cb3cf80-8f5d-4bdd-9956-16aecb405f3a"
 },
 {
 "DateTimeFormat": "dd.MM.yyyy",
 "Type": 4,
 "Synonyms": [
[bookmark: _Hlk20329807] 	"Scheduled date of next checkup",
 	"Next checkup",
 	"Date of checkup",
 	"Date of next checkup"
],
 "Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
 }
],
	"CultureCode": "ru-RU"
[bookmark: _9oghh92u5lfl] }
[bookmark: _2olw5e9r7xnp]}

After successful loading of form metadata, the client will receive a message about changing current recognition mode. If it is impossible to initialize the form (for example, if metadata was produced incorrectly), error message will be sent.

Example of a request for starting pre-imported form recognition

{
 "MessageType": 6,
 "Data": {
 	"Key": "a0bc1744-010c-4414-84e6-acabeff7b517",
 	"CultureCode": "ru-RU"
 }
[bookmark: _mrrjly5wzf7]}

[bookmark: _gkwsrav4pdqj]If the form and all its catalogs were pre-initialized, then during form initialization you can exclude Childs field from the data you send in FormMetadata object.
Read more about pre-import of forms and catalogs in the respective section.

[bookmark: 5pwp8yvft0wo][bookmark: _1whawg40w6qk]FormSettings: additional parameters of form recognition
FormSettings is an optional field that allows to influence additional parameters of form recognition, such as TTS management (voice confirmation of recognition) and changing focus on elements.
Example of data:
{
 ...
 "FormSettings": {
	"TtsFieldNameEnabled": true,
	"TtsFieldValueEnabled": false,
	"TtsTextFieldValueEnabled": true,
	"CyclicFocusNotificationEnabled": true,
	"WizardMode_TtsFullGroupNamingEnabled": false,
	"WizardMode_IsAutoSwitchingEnabled": true,
	"WizardMode_IsAutoSwitchingEnabledForText": true
 },
 ...
[bookmark: _7dtl97xmhm6f]}

	FormSettings

	Class that contains additional form recognition parameters

	Field
	Field type
	Default value
	Description

	TtsFieldNameEnabled
	bool
	true
(starting from version 4.1.216: false)
	Enable/disable voicing of field name

	TtsFieldValueEnabled
	bool
	false
	Enable/disable voicing of field value

	TtsTextFieldValueEnabled
	bool
	true
(starting from version 4.1.215: false)
	Enable/disable voicing of field value for text fields.

Only if TtsFieldValueEnabled = true.

	WizardMode_TtsFullGroupNamingEnabled
	bool
	false
	Used only for VoiceWizard mode.

True: full voicing of all the groups with the field when you move to the field.

False: group name will be voiced only if previous active element belonged to a different group.

	WizardMode_IsAutoSwitchingEnabled
	bool
	true
	Used only for VoiceWizard mode.

True: after filing the field with value (successful recognition) the system automatically switches to the next field.

False: the system does not automatically switch to the next field.

	WizardMode_IsAutoSwitchingEnabledForText
	bool
	true
	Used only for VoiceWizard mode.

Only if WizardMode_IsAutoSwitchingEnabled = true.

Enable/Disable automatic switch for text fields.

	CyclicFocusNotificationEnabled
	bool
	true
	Enable/Disable cyclical notification about changing focus on element.

Determines whether the client needs to be informed about change of focus on element (ActiveElement), if the client initiated the change.

[bookmark: _v6t7ng23sbex]Mode: form filling mode
Mode is an optional field that allows to choose recognition mode: VoiceWizard or default mode.
Example of data:
{
[bookmark: _sm1i5gi2ji2e] ...
[bookmark: _nc5e4ia0vw4r] "Mode": 1,
[bookmark: _fj0lh4aggei7] ...
[bookmark: _bgof84no5wua]}
It is an additional field in FormMetadata object.

[bookmark: 2mlbgmklokzv][bookmark: _8qql3zfpq553]Custom commands
Custom commands is an optional field that allows you to set your own voice commands. It is a collection of phrases and command identifiers. When the phrase that matches the command is recognized, the client receives the respective notification with the command identifier.
Example of data:
{
 ...
 "CustomCommands": [
	{
 	"Key": "7d4565a7-b408-44d4-afc4-26b96a842446",
 	"Value": "Clear field"
	},
	{
 	"Key": "037ccb5c-6bde-4853-b7df-a6bb5b72916e",
 	"Value": "Next field"
	},
	{
 	"Key": "d7823973-af46-4cdc-bab8-1c8db097ad7a",
 	"Value": "Previous field"
	},
	{
 	"Key": "546f4ef9-ff59-4a5b-a368-a97c3e03240c",
 	"Value": "Finish form recognition"
	}
],
 ...
[bookmark: _dryqx06kytsi]}
[bookmark: _xuwvwhm83na6]
It is an additional filed in FormMetadata object.

[bookmark: ucowkdxazmws][bookmark: _hslktz9a0evf]Theme (language model)
Themeld is an optional field that allows to specify language model to be used in process of form recognition.
[bookmark: _anb2fdapf8mv][bookmark: _u9eu9pjbxp6f]Language model (or theme) influences only filling fields with direct cursor, such as string fields and combo boxes that allow direct cursor (not a default setting). The influence depends on the value of direct cursor.
For example, if we have Comment field:
1)	The user says “Comment” and the focus is set on Comment field (language model does not have influence).
2)	The user says: “This field will contain some random text” (language model has influence and the result of recognition depends on it).
[bookmark: _idp3gynxtogl]Language model does not influence filling other field types.
Example of data:
{
 ...
 "ThemeId": "main_2.3.13",
[bookmark: _xxv5pr84exen] ...
[bookmark: _7j4plyoumtb2]}
[bookmark: _lig36f0a3oc]
It is an additional field in FormMetadata object.
You can read about getting the list of available themes in the respective subsection. Please note that there are two ways of getting the themes: through WebSocket and REST API.

[bookmark: _6yqj6cschnq0]Description of classes, class fields and special requirements

	[bookmark: hvb1hwe1jqfl]FormMetadata

	Class that contains full form description

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Form type identifier. It is used for caching metadata.

	Name
	String
	
	Name

	Childs
	List of FormElementMetadata
	Mandatory
	Collection (hierarchy) of form elements

	CultureCode
	String
	
	Culture code that will be used for serializing the recognized data, such as “ru-RU”.
If you do not set culture code, InvariantCulture will be used.

	FormSettings
	FormSettings
	
	Additional recognition parameters

	Mode
	Int32 (nullable)
	
	0 – voicing in key-value format (used by default);
1 – VoiceWizard mode.
System pronounces the key and expects the value to be pronounced by the user.

	CustomCommands
	List<KeyValuePair<string, string>>
	
	User commands for managing the form

	ThemeId
	String
	
	Theme identifier

	FormElementMetadata

	Abstract class
Concrete implementations: ContainerMetadata and ValuedFormElementMetadata
Describing the element in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Form type identifier.
This identifier will be used for caching metadata.

	Synonyms
	List of strings
	Mandatory
	Collection of strings used by the system to determine whether the recognized data matches the element.

	Postfix
	List of strings
	Not mandatory
	Collection of strings (phrases) that can be pronounced after the value and that user usually pronounces, such as units of measurement. For example, in the phrase “Temperature is 37 degrees” the word “degrees” is not necessary for pronunciation and does not influence the final field value (37), but the user is likely to pronounce it.
The field is not used for string type and containers.

	[bookmark: pgfp843rl9he]ContainerMetadata

	Class container for other elements

	Childs
	List of FormElementMetadata
	Mandatory
	Collection (hierarchy) of elements in form

	[bookmark: 148oagti0tgl]ValuedFormElementMetadata

	Class with the description of the filled field. ContainerMetadata child

	Type
	Int32
	Mandatory
	Field type

	The following fields are relevant only for Date, Time and DateTime types

	DateTimeFormat
	String
	Used for:
Date
Time DateTime

	If the data type is a data or/and time, the field should contain the format of returned data.
If you do not set the field, the InvariantCulture will be used.

	The following fields are relevant only for Link type

	HandbookKey
	String
	Used for:
Link
	If the data type is a link or a listing, the field should contain catalog key that identifies the catalog. If the key is not sent, the metadata will not be cached.

	AvailableValues
	List of elements consisting of KeyValuePair<string, string>
	Mandatory for:
Link
	If the data type is a link or a listing, the field should contain the list of possible values.

	The following fields are relevant for Complex type

	Childs
	The list of ValuedFormElementMetadata
	Mandatory for:
Complex
	If the data type is complex, the field should contain the list of simple elements (keys are not necessary). This field type is filled with phrases pronounced continuously, such as “Elevated blood pressure (140 over 90)”.

[bookmark: x3d2jjnfpuet]Managing focus and grouping elements
Elements in the form can be grouped differently. Two different groups can contain the same elements (see example where After activity and Before activity groups contain the same field Pulse). Bookmarks and other elements can also be viewed as groups.
To make filling these forms easier, the active group concept is used. At the start, the active group is empty. When the operator pronounces the phrase “Before activity”, the respective group is marked as active. If the operator continues and pronounces the phrase “Pulse is 68”, the client (HIS) will receive the notification about filling the respective field in the group. The field in the next group (After activity) will be ignored.
[bookmark: _bie9kvhnq8a]To make another group active, you should pronounce its name (in this case, “Before activity”)

To make the group inactive, you should move to filling the field that does not belong to the group (for example Sex or Description)

[bookmark: 8wj8i9r9hxfo][bookmark: _55ih6tc9t7u]Notification about focusing on group or element
Notification comes from a server (Voice2Med) to the client (HIS). Notification comes when the operator pronounces the name of a group and the group becomes active (see the example and ContainerMetadata description).
{
 "MessageType": 2,
 "Data": {
	"Key": "ea0ac1b8-d91d-4b98-8d63-4f565048ab77"
[bookmark: _uv7h539xiog9] }
[bookmark: _p3s6fjrnb7x6]}

[bookmark: 46awfdze8jro][bookmark: _kuf1304zq1fl]Returned notification about focusing on group or element
The notification comes from client (HIS) to server (Voice2Med). It is used when you need to manually set active group (for example, when user switched the tab in form). Any element can be made active.
[bookmark: _83v03bf5r2s3] Example

{
 "MessageType": 5,
 "Data": "ea0ac1b8-d91d-4b98-8d63-4f565048ab77"
[bookmark: _3p786ull5eu3]}

[bookmark: _ngezr9hjkm2x]If you need to reset the status of active group to inactive, send null in Key field.
{
 "MessageType": 5,
[bookmark: _ksb4p8if78ig] "Data": null
[bookmark: _lnvdd6j3ppt0]}

[bookmark: 8msa0ucpkfko]Filling text forms: notification about value recognition
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of a text field and its value in operator’s speech. The value contains simple text.
[bookmark: _suka8l5qdekt]Metadata format
During form initialization this type of fields is described by ValuedFormElementMetadata class.
[bookmark: _a59hxyacidki]...
{
 "Type": 0,
 "Synonyms": [
	"Description"
],
 "Key": "9cb3cf80-8f5d-4bdd-9956-16aecb405f3a"
[bookmark: _jjh4wlw9myw]}
[bookmark: _b9fv45yqlui5]...

[bookmark: _rn0f8yr52aec]Example of a returned value

{
 "MessageType": 1,
 "Data": {
[bookmark: _3bgt8132l5b4]	"Type": 0,
[bookmark: _rae781xz1ghc]	"IsFinal": true,
	"Value": "Some text description",
	"Key": "9cb3cf80-8f5d-4bdd-9956-16aecb405f3a"
[bookmark: _rzpo5mgl86ig] }
[bookmark: _xn4fke5weqvr]}

[bookmark: _v34b7lehjams]Description of classes, class fields and special requirements

	ValuedElementInfo<String>

	Class that contains information about text field in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of the element in the form

	Type
	Int32
	Mandatory
	Always equals 0

	Value
	String
	Mandatory
	Recognized value

	IsFinal
	Boolean
	
	true – final result.
false – result can be corrected (for example, this result can be shown to user in a tooltip to inform that recognition is in process).

[bookmark: k57uoh8n9kab][bookmark: _hxaksfkin5lw]Filling Boolean fields (Boolean)
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of a Boolean field and its value. It contains true or false values.
[bookmark: _htr75vdhylbp]Metadata format
During form initialization this type of fields is described by ValuedFormElementMetadata class.

[bookmark: _e8fwsdo6y2q9]...
{
 "Type": 1,
 "Synonyms": [
	"Insurance status",
	"Insurance"
],
[bookmark: _y4edmjzfvat7] "Key": "1d77096e-53eb-48ea-bfad-4ea3bab2b3a7"
[bookmark: _nwz3b6iw2lem]}
[bookmark: _n0qhjxu62zra]...

[bookmark: _n0x7dbcxbn16]Example of a returned value

{
 "MessageType": 1,
 "Data": {
	"Type": 1,
	"Value": true,
	"Key": "1d77096e-53eb-48ea-bfad-4ea3bab2b3a7"
[bookmark: _1rv2fm4x1mkh] }
[bookmark: _twqzwf877xht]}

[bookmark: _huua87vrzone][bookmark: _Hlk19873173]Description of classes, class fields and special requirements

	ValuedElementInfo<Boolean>

	Class that contains information about Boolean field in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of the element in the form

	Type
	Int32
	Mandatory
	Always equals 1

	Value
	Boolean
	Mandatory
	Recognized value

[bookmark: 6cwglamh1ff2]Filling integer fields (int32)
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of an integer field and its value.

[bookmark: _wku789i3ou8g]Metadata format
During form initialization this type of fields is described by ValuedFormElementMetadata class.

[bookmark: _6hcz8g4v4dxo]...
{
 "Type": 2,
 "Synonyms": [
	"Pulse"
],
[bookmark: _q8j8fcrg4cw] "Key": "b5dcd5b9-576a-420b-aea2-b81171a2ee8e"
[bookmark: _8xy8pxb1eu6u]}
[bookmark: _hptsy0ju5ejy]...

[bookmark: _pujw98wlmiz4]Example of a returned value for int32

{
 "MessageType": 1,
 "Data": {
 	"Type": 2,
 	"Value": 500,
 	"Key": "b5dcd5b9-576a-420b-aea2-b81171a2ee8e"
[bookmark: _762pvq2rt2f9] }
[bookmark: _1cgcrd3h4jjm]}

[bookmark: _hnp36c4n6tsm]Description of classes, class fields and special requirements

	ValuedElementInfo<Int32>

	Class that contains information about integer field in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of the element in the form

	Type
	Int32
	Mandatory
	Always equals 2

	Value
	Int32
	Mandatory
	Recognized value

[bookmark: fu5c8xhh6p3k]Filling decimal fields (decimal)
Notification about successful recognition comes from the server (Voice2Med) to client (HIS) when the system recognizes the name of a decimal field and its value in operator’s speech.

[bookmark: _pyonm3v5ywrp]Metadata format
[bookmark: _nto6rdawu9we]During form initialization this type of fields is described by ValuedFormElementMetadata class.
...
{
 "Type": 3,
 "Synonyms": [
	"Temperature"
],
[bookmark: _us7kpyekzw16] "Key": "93d60cc9-fa05-4cdc-b9dd-628e95fe51d9"
[bookmark: _l31ql4k3on0t]}
[bookmark: _1a7tbjztjna]...

[bookmark: _d05vd8rqzjmj]Example of a returned value

{
 "MessageType": 1,
 "Data": {
	"Type": 3,
	"Value": 35.42,
	"Key": "08a39d7e-4620-415d-bbb6-460794e4fcd6"
[bookmark: _jf94x9ra0pfh] }
[bookmark: _mw5qn15pqbfy]}

[bookmark: _6oho6axxlfvh][bookmark: _Hlk19875680]Description of classes, class fields and special requirements

	ValuedElementInfo<Decimal>

	Class that contains information about decimal field in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of the element in the form

	Type
	Int32
	Mandatory
	Always equals 3

	Value
	Decimal
	Mandatory
	Recognized value

[bookmark: ou1xem7wx8re]Filling date and time fields (DateTime)
[bookmark: _7v7flffio0mx]Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of a date and/or time field and its value in operator’s speech. The value is returned in string format (specified in metadata).

Metadata format
[bookmark: _miexzojs7e70]During form initialization this type of fields is described by ValuedFormElementMetadata class.
...
{
 "DateTimeFormat": "dd.MM.yyyy",
 "Type": 4,
 "Synonyms": [
	"Scheduled date of next checkup",
 	"Next checkup",
 	"Date of checkup",
 	"Date of next checkup"
],
 "Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
[bookmark: _5lb5l2czhgzv]}
[bookmark: _ulcio2i19k8b]...

[bookmark: _zcaey4ngax40]Example of a returned value for date

{
 "MessageType": 1,
 "Data": {
	"Type": 4,
	"Value": "20.12.2018",
	"Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
 }
[bookmark: _buhl9b9nz3y]}

[bookmark: _t6tz1rggcwvk]Example of a returned value for time

{
 "MessageType": 1,
 "Data": {
	"Type": 5,
	"Value": "14:45",
	"Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
[bookmark: _z70ox174pua1] }
[bookmark: _d1h8t4xaouej]}

[bookmark: _52uhvqhwxu9a]Example of a returned value for DateTime

{
 "MessageType": 1,
 "Data": {
	"Type": 6,
	"Value": "20.12.2018 14:45",
	"Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
[bookmark: _k1pd3buhc1n7] }
[bookmark: _prysvfszdh30]}
[bookmark: _tm6nal8ns9h2]Description of classes, class fields and special requirements

	ValuedElementInfo<String>

	Class that contains information about field in the form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of the element in the form

	Type
	Int32
	Mandatory
	Possible values: 4, 5, 6

	Value
	String
	Mandatory
	Recognized value

[bookmark: gopgtdgxuqq7]Filling enumeration value fields (Enum or link to catalog)
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of an enumeration field (or a field with the link to catalog) and its value in operator’s speech. The returned value is the list of KeyValuePair<string, string> values.

[bookmark: _x2dv635azo2r]Metadata format
During form initialization this type of fields is described by ValuedFormElementMetadata class.
...
{
 "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
 "AvailableValues": [
 {
 "Key": "0",
 "Value": "Male"
 },
 {
 "Key": "1",
 "Value": "Female"
 }
],
 "Type": 7,
 "Synonyms": [
	"Sex"
],
[bookmark: _4o1zz97cpjox] "FreeTextAvaliable": false,
[bookmark: _2k5a4ptkhyg2]
 "Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
[bookmark: _78x12x70gyp3]}
[bookmark: _mw6jnqaiw7ix]...

Please pay attention to FreeTextAvailable field. It is false by default, but you can set true value in exceptional cases. Then you can enter free text in the field, not only choose between default options.
Free text mode requires special text entry method: first, the user should pronounce field name, then pause and make sure the field is active. Then the user pronounces random text.

[bookmark: _l0uyg1ha7eca]Example of a standard returned value

{
 "MessageType": 1,
 "Data": {
	"Type": 7,
	"HandbookRow": [
 {
 "Key": "0",
 "Value": "Male"
 }
],
"Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
 }
[bookmark: _3q739mf70mrj]}

[bookmark: _by5rl4e2i3zi]Example of a free returned value

{
 "MessageType": 1,
 "Data": {
	"Type": 7,
	"Value": "Some random text",
[bookmark: _jw7ojh1d2hhx]"Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
[bookmark: _hic2vi3ky8jh] }
[bookmark: _7cp7u9bna483]}

Description of classes, class fields and special requirements

	ValuedElementInfo<KeyValuePair<string, string>[]>

	Class that contains information about enumeration field in form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of element in form

	Type
	Int32
	Mandatory
	Always equals 7

	HandbookRow
	KeyValuePair<string,string>
	Not mandatory (one of the HandbookRow
and Value fields will be filled)
	Recognized value

	Value
	String
	Not mandatory
	If this combo box was chosen as a currently active element (its name was pronounced with a pause) and only the text was recognized (without key-binding or field-binding), the field gets back the value without the key.
It can be used for ComboBox elements with free entry fields.

[bookmark: 5kglnajn9m5z][bookmark: _tx1lvn37pf9e]Filling age type fields (TimeSpan)
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of a time span field and its value in operator’s speech. The value is returned in string format.
[bookmark: _k8osaf240610]Metadata format
[bookmark: _a7rfv9lvatga]During form initialization this type of fields is described by ValuedFormElementMetadata class.
...
{
 "Type": 8,
 "Synonyms": [
	"Age"
[bookmark: _tmvbks7rxel7]],
[bookmark: _9a96xdmyealq] "Key": "5d3c09ca-78ee-486d-b278-9c575177c1d7"
[bookmark: _hwffx5xtxomh]}
[bookmark: _tfznhet9dc4h]...

[bookmark: _ddun7ryacy33]Example of a returned value for TimeSpan

{
 "MessageType": 1,
 "Data": {
	"Type": 8,
	"Value": "35 years old",
	"Key": "5d3c09ca-78ee-486d-b278-9c575177c1d7"
[bookmark: _etg1cpv0d171] }
[bookmark: _f9g0xmph4afr]}

[bookmark: _trjqe8xv73hq]Description of classes, class fields and special requirements

	ValuedElementInfo<String>

	Class that contains information about field in form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of element in form

	Type
	Int32
	Mandatory
	Possible values: 8

	Value
	String
	Mandatory
	Recognized value

[bookmark: jgfxv4lsw1rl][bookmark: _k1ahxfz7be65]Filling complex fields
Notification about successful recognition comes from the server (Voice2Med) to the client (HIS) when the system recognizes the name of a complex field and its value in operator’s speech. The returned value is the list of ValuedElementInfo<T> values.

[bookmark: _i98xskl34rmt]Metadata format
During form initialization this type of fields is described by ValuedFormElementMetadata class.

[bookmark: _urw3y7rcnlhg]...
{
 "Childs": [
 {
 "HandbookKey": "3b00e940-1f75-4bae-ae33-7796dbceb768",
 "AvailableValues": [
 { "Key": "0", "Value": "Normal" },
 { "Key": "1", "Value": "High" },
 	 { "Key": "2", "Value": "Low" }
],
 "Type": 7,
 "Synonyms": [],
 "Key": "ec58154c-28d7-4aaa-953e-7a7fc149ee56"
 },
 {
[bookmark: _k1aa55ng9p8b] "Type": 2,
 "Key": "7c11c54e-4cef-44f5-b895-2c82383d151d"
 },
 {
 "Type": 2,
 "Synonyms": [
[bookmark: _gqh72oo4dlma] "by"
],
 "Key": "92e99d18-54e5-4920-89d3-70d589f312e2"
 }
],
 "Type": 100,
 "Synonyms": [
	"Blood pressure"
],
[bookmark: _2mu3hwukhzly] "Key": "06b13fe2-32e6-49a1-b376-ff0237414a6b"
[bookmark: _klcvmwnsg6lu]}
[bookmark: _b8jlmlm3h0ii]...

[bookmark: _vbef429a8p45]Example of a returned value

{
 "MessageType": 1,
 "Data": {
	"Type": 100,
	"Childs": [
 {
 "Type": 7,
 "Value": [
 {
 "Key": "0",
 "Value": "Normal"
 }
]
 },
 { "Type": 2, "Value": 120 },
 { "Type": 2, "Value": 80 }
],
	"Key": "06b13fe2-32e6-49a1-b376-ff0237414a6b"
[bookmark: _jz445f6pjb7j] }
[bookmark: _23s3um7zg7sc]}

[bookmark: _e2m4bk2x7wrc]Description of classes, class fields and special requirements

	ValuedElementInfo<ValuedElementInfo<T>[]>

	Class that contains information about complex field in form

	Field
	Field type
	Requirements
	Description

	Key
	String
	Mandatory
	Key identifier of element in form

	Type
	Int32
	Mandatory
	Always equals 100

	Childs
	List of ValuedElementInfo<T>
	Mandatory
	Recognized value

[bookmark: v4kfjag5qyk1][bookmark: _pa6uem8dk2kg]Finishing form editing
After finishing form editing, you need to switch from recognition mode to standard mode.

[bookmark: _dslc67bzk743]Example of a message

{
 "MessageType": 7
[bookmark: _g4xa0ve5ohru]}
To find example of a message returned to the client, see the respective section.

[bookmark: _48y52hj19vnl]Algorithm of search for the key in form tree
When you fill complex forms by voice, filling fields nested in groups (such as tabs in a form) can be problematic. Filling fields that have the same name is even more problematic. Such fields should be located in different groups, otherwise it will be unclear which field is referred to when the field name is pronounced. To avoid these problems, the system uses groups of elements in a form and focus on the element. It allows to determine which group elements are filled at the moment.
To find more about managing focus and grouping elements, see the respective subsection.
All elements in the form that are described in metadata, can be presented as a tree. The root node is the form itself, simple nodes are the groups and the leaves are the fields.
[bookmark: _bc1n3c14m3os]Tree nodes: elements that contain child elements.
[bookmark: _w88ymyhg34es]Leaves: elements that do not contain child elements.
To find elements that match the user’s phrase in form metadata, a tree walk algorithm is used. The algorithm can be described by the following rule: “When you fill the fields in a group, you should pronounce the group name. Then the group will become active”.	
After the user’s phrase is recognized, field filling can follow several hypotheses (if the pronounced phrase matches several fields).
[bookmark: _tvy0ctj0abgv]Hypothesis: a list of groups, fields and their values that match the pronounced phrase.
To determine which field to fill, the system searches through metadata tree. A tree walk starts from the active element (first the form itself). Then by the active element the system finds the parent group. This group can be an element itself if it is not a leaf. After that, for each hypothesis the system chooses the first element of the hypothesis (node) and searches for a matching node or a leaf. If the matching n0de or leaf was found for some element of the hypothesis, all hypotheses without matches are discarded. If nothing was found for any hypothesis in the current node, the system moves to the parent node and repeats the search.
[bookmark: _nkwyjjpiph1r]Complex field is a node (it has child elements), but it is considered a leaf in process of search for the parent node.
The process continues until all elements of not discarded hypotheses have a match or until the root node is reached (in this case, all hypotheses are discarded). If in the end of the search the only option for filling fields is left, these fields are filled accordingly. If there are several hypotheses left, you get a respective notification. If there are no hypotheses left, the user’s phrase is ignored.

[bookmark: xdhi4zyygo1x]Importing catalogs and forms
If you have large amount of metadata to process, production of data can take a lot of time. Form descriptions and catalogs can contain large amount of data; thus, you need to pre-initialize forms and catalogs to speed up production. Then only metadata key identifier will be sent at the start of form filling, not all data.
[bookmark: _zghn2tc9t4zx]Example of a request for starting pre-imported form recognition

{
 "MessageType": 6,
 "Data": {
 	"Key": "a0bc1744-010c-4414-84e6-acabeff7b517",
 	"CultureCode": "ru-RU"
 }
[bookmark: _kykina1x16e6]}

[bookmark: _8lg52x1efgvo]If the form and all its catalogs were pre-initialized, then during form initialization you can exclude Childs field from the data you send in FormMetadata object.

[bookmark: dmoqxr2yil9i]Pre-importing catalog metadata
Most forms contain simple fields that are filled with recognized values and ref fields that are linked to respective catalogs. To fill this fields by voice, you should send all the values from the linked catalog in key-value format. The same applies to enumeration fields (for example, Sex field).
Below you can see the example of a request for catalog pre-initialization and the description of sent data fields. To find the example of a received response, see the special subsection of this specification.
[bookmark: _6cufg01c0auo]Example of a request

[bookmark: _8xqvv1yolf48]{
[bookmark: _fs8v9s30q3k2] "MessageType": 1,
[bookmark: _jr5lmqvcm0zm] "Data": {
[bookmark: _746km1diru60] "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
[bookmark: _3pe05pw55wjf] "Name": "Sex",
[bookmark: _iuvv6kmzrd9f] "AvailableValues": [
[bookmark: _bss47c6he2aq] {
[bookmark: _60vmrzosb18e] "Key": "0",
[bookmark: _gorxr8qkzf9o] "Value": "Male"
[bookmark: _vdcnhkpb5w6f] },
[bookmark: _ngubehmrt1xn] {
[bookmark: _7w3tm2ab0rtz] "Key": "1",
[bookmark: _ym8i9ti5w37c] "Value": "Female"
[bookmark: _7kgojnt8mxk6] }]
[bookmark: _mw0taxk616xl] }
[bookmark: _n30i0c4159g9]}

[bookmark: _8h8jzyy70qnz]Description of classes, class fields and special requirements
	HandbookMetadata

	Class that contains catalog metadata

	Field
	Field type
	Requirements
	Description

	HandbookKey
	String
	Mandatory
	Catalog key identifier

	Name
	String
	
	Name

	AvailableValues
	List of elements consisting of KeyValuePair<string, string>
	Mandatory
	List of possible values in key-value format

[bookmark: _pre-import_of_form]Pre-importing form metadata
Form metadata can be cached. If the form contains ref or enumeration fields, it is recommended to cache them first and to not send their data while caching. You should send only catalog key and field key.
It means that instead of the following message:
[bookmark: _74qn4u2w8nkx]...
{
 "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
[bookmark: _edh23x1xiz87] "Name": "Sex",
 "AvailableValues": [
 {
 "Key": "0",
 "Value": "Male"
 },
 {
 "Key": "1",
 "Value": "Female"
 }
],
 "Type": 7,
 "Synonyms": [
	"Sex"
],
 "Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
}
...
you should send the short version:
[bookmark: _l0500b4s55d]...
{
 "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
 "Type": 7,
[bookmark: _wiox4enbogqy] "Synonyms": [
[bookmark: _fllx4pcbtgi2]	"Sex"
[bookmark: _prghvmf4xleb]],
[bookmark: _n9dn9np8rr0j] "Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
[bookmark: _gwkxax55wa45]}
[bookmark: _qvseaqvt83sc]...

The format of a request for pre-initialization is similar to the format of request for standard form initialization, except for a different code sent in the message container.
Another difference of this method is the format of a returned value. In this case, the recognition mode will not change, but you will receive a message with the description of cached metadata.

[bookmark: _70jq7twu9gpu]Example of request for form pre-initialization
[bookmark: _bmw7jvsn0bh6]In this example all matching catalogs for ref fields were pre-imported.
{
 "MessageType": 2,
 "Data": {
	"Key": "a0bc1744-010c-4414-84e6-acabeff7b517",
[bookmark: _1jczl8taq3wo]	"Name": "Form №1",
	"Childs": [
 {
 "HandbookKey": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
 "Type": 7,
 "Key": "7b43b0e0-5e02-4422-984a-e4f531021744"
 },
 	{
 	"Type": 1,
 	"Synonyms": [
 	"Insurance status",
 	"Insurance"
],
 	"Key": "1d77096e-53eb-48ea-bfad-4ea3bab2b3a7"
 	},
 	{
 	"Childs": [
 	{
 	"Type": 2,
 	"Synonyms": [
 	"Pulse"
],
 	"Key": "b5dcd5b9-576a-420b-aea2-b81171a2ee8e"
 	},
 	{
 	"Childs": [
 	{
 	"HandbookKey": "3b00e940-1f75-4bae-ae33-7796dbceb768",
 	"Type": 7,
 	"Key": "ec58154c-28d7-4aaa-953e-7a7fc149ee56"
 	},
 	{
 	"Type": 2,
 	"Key": "7c11c54e-4cef-44f5-b895-2c82383d151d"
 	},
 	{
 	"Type": 2,
 	"Synonyms": [
 	"by"
],
 	"Key": "92e99d18-54e5-4920-89d3-70d589f312e2"
 	}
],
 	"Type": 100,
 	"Synonyms": [
 	"Blood pressure"
],
 	"Key": "06b13fe2-32e6-49a1-b376-ff0237414a6b"
 	}
],
 	"Synonyms": [
 	"Before activity",
 	"Before"
],
 	"Key": "34041bd0-8fac-4026-ac9f-3ede5dc23f50"
 	},
 	{
 	"Childs": [
 	{
 	"Type": 2,
 	"Synonyms": [
 	 "Pulse"
],
 	"Key": "8974d016-0669-4b1f-a968-ad124240c2dd"
 	},
 	{
 	"Childs": [
 	{
 	"HandbookKey": "8ecafe5b-a6cf-4576-b423-cd915d25bba3",
 	"Type": 7,
 	"Key": "aa2d7231-4176-45cf-bb02-b556a16223b3"
 	},
 	{
 	"Type": 2,
 	"Key": "34110649-7e2d-4f0e-9d19-5c0734c47509"
 	},
 	{
 	"Type": 2,
 	"Synonyms": [
 	"by"
],
 	"Key": "c6e21691-6116-4097-8b87-824f376508a2"
 	}
],
 	"Type": 100,
 	"Synonyms": [
 	"Blood pressure"
],
 "Key": "af298d98-3f3c-4529-8ed1-0bc2857c6bd8"
 	}
],
 	"Synonyms": [
 	"After activity",
 	"After"
],
 	"Key": "ea0ac1b8-d91d-4b98-8d63-4f565048ab77"
 	},
 	{
 	"Type": 0,
 	"Synonyms": [
 	"Description"
],
 	"Key": "9cb3cf80-8f5d-4bdd-9956-16aecb405f3a"
 	},
 	{
 	"DateTimeFormat": "dd.MM.yyyy",
 	"Type": 4,
 	"Synonyms": [
 	"Scheduled date of next checkup",
 	"Next checkup",
 	"Date of checkup",
 	"Date of next checkup"
],
 	"Key": "0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
 	}
],
	"CultureCode": "ru-RU"
[bookmark: _ij3w5dsa328x] }
[bookmark: _69x8oj5ebf25]}

[bookmark: sz242wufzyfu]Request for getting the list of cached metadata
The request is sent from the client (HIS) to the server (Voice2Med). As a result, you get data structure that contains the list of pre-imported and cached metadata with catalog key identifiers and HashCode.
[bookmark: _5k108n3re213]HashCode is a metadata hash calculated on server side. HashCode is intended for metadata version support. HashCode is calculated using metadata JSON and SHA256 algorithm. In case of a form, calculations do not include Themeld field and catalogs’ data (if the catalogs are external, meaning they contain HandbookKey).
[bookmark: _rihtvw96kq56]Example of a request
{
 "MessageType": 3
[bookmark: _xbs8sfwhv3zc]}

[bookmark: drhnviprpify]Request for getting the description of cached metadata by identifier
The request is sent from the client (HIS) to the server (Voice2Med). As a result, you get data structure that contains the description of all pre-imported and cached metadata matching the key identifier in the request.
[bookmark: _ukbxxftzvqp5]Example of a request

[bookmark: _swmuj689mll8]{
[bookmark: _hn4orcmj8gmu] "MessageType": 4,
[bookmark: _tb139pen5qna] "Data": "a0bc1744-010c-4414-84e6-acabeff7b517"
[bookmark: _hqe2v86rzely]}

[bookmark: o6433qazhgt0][bookmark: _91fwzkpwnsiy]Returning the list of cached metadata
The message is sent from the client (HIS) to the server (Voice2Med). It contains the list of all pre-imported and cached metadata with catalog key identifiers and HashCode.

[bookmark: _7nlybqti6qfu]Example of a message

{
 "MessageType": 3,
 "Data": [
 {
"Key": "29df53b0-f9f0-4176-aace-3331fde486a4",
"Type": 0,
"HashCode": "o�0�[!��\u0014Ճ��[�C=�v-jġ��~F���\u0016"
 }]
[bookmark: _yydo1txl6uqc]}

[bookmark: p62b31a988t2][bookmark: _b63lilrlvqdg]Returning the description of cached metadata
The message is sent form the client (HIS) to the server (Voice2Med). It contains the description of pre-imported and cached metadata matching the key identifier in the request.

[bookmark: _rehbwenfake]Example of a message

{
 "MessageType": 4,
 "Data": {
"Key": "8b2efc13-5fda-4973-9cd6-2d3e7947addf",
"Type": 0,
"HashCode": "o�0�[!��\u0014Ճ��[�C=�v-jġ��~F���\u0016"
[bookmark: _jcap9sf3333v] }
}

[bookmark: ifrggsxethgr][bookmark: _sjh4gc443fvi]Request for getting the list of themes
As a result, you get the list of available themes (language models). Language models are used for continuous recognition mode, for example, for filling direct cursor fields. When filling standard fields (without direct cursor), the choice of language model is not important.
[bookmark: _7cdwt2ybb21x]Request of a message to WebSocket

{
 "MessageType": 8
[bookmark: _zbdg206y4he7]}
To find the example of a value returned to the client, see the respective subsection.
[bookmark: _q0exb8bo6hfg]Executing the request through WebSocket can be inconvenient as this request has synchronous logic and WebSocket implies asynchronous communication. Thus, you can get the list of themes through a synchronous request to REST API. However, it is not mandatory.

[bookmark: u2g4cobhpro][bookmark: _syj66t6zgzml]Request for changing theme
As a result, you change currently active language model. Language models are used for continuous recognition mode, for example, for filling direct cursor fields. When filling standard fields (without direct cursor), the choice of language model is not important.
	
[bookmark: _4zdg8l82wn80]Example of a message

[bookmark: _bpreykvi8c07]{
[bookmark: _54v1jagffymq] "MessageType": 9,
 "Data":
 {
[bookmark: _q5g0oi639g3h] "Id": "Notepad_respeaking_16000"
[bookmark: _r1g5ujdv9asf] }
[bookmark: _vg9nkbid25k3]}

[bookmark: _mgxq7dabgkx7]Additional notifications
[bookmark: 4gsl1mokhp18][bookmark: _s5xbhild4h1n]Error notifications
Error notifications come from the server (Voice2Med) to the client (HIS) at the time when the error happens, for example, when you try to load incorrect data as form metadata.
[bookmark: _aeja2j1k0em7]Example of a returned request

{
 "MessageType": 5,
 "Data": {
	"Message": "Incorrect format of loaded metadata"
[bookmark: _swvxojy9tb6d] }
[bookmark: _facprnpt2zsu]}

[bookmark: _nljh8yocf4sr]Description of classes, class fields and special requirements

	ErrorInfo

	Class that contains the description of an error

	Field
	Field type
	Requirements
	Description

	Message
	String
	Mandatory
	Error notification

[bookmark: pu6egxb6c16d][bookmark: _r28gyrmrgp8r]Notification about recognizing several values
The notification comes from the server (Voice2Med) to the client (HIS) if the recognized value matches several values.

[bookmark: _pqwumww6065z]Example of a returned value

{
 "MessageType": 6,
 "Data": [
[bookmark: _2smayyoaeod7] [{
	"Type": 4,
	"Value": "20.12.2018",
	"Key": 	"0d2f0d70-be6a-4f02-b71f-b3e2adc80542"
[bookmark: _7sbv0p4o195e] }],
[bookmark: _bkfgi6mokpmd] [{
	"Type": 4,
	"Value": "20.12.2018",
	"Key": "9707c7c9-5cc3-441b-8418-a840b8bfb356"
 }]]
[bookmark: _nhlgqk1wwrv8]}

[bookmark: s6h5wd0kxeb][bookmark: _ty10xa9mxsu6]Returning the list of available language models
Notification contains the list of available language models.

[bookmark: _1qcq4mms1ovn]Example of a returned value

{
 "MessageType": 7,
 "Data": [
	{
 	"Id": "Notepad_respeaking_16000",
 	"Name": "Notepad_respeaking_16000",
 	"Version": "1.0.0"
	}
]
[bookmark: _j6z3qpw2x27d]}

[bookmark: cszg9kere2lf][bookmark: _wh7x0pp0cf9o]Notification about changing currently active voice model
Notification contains currently active language model. The notification is sent during the change of a language model.

[bookmark: _lsqso4zbzk9r]Example of a returned request

{
 "MessageType": 8,
[bookmark: _hhzr4giin44j] "Data":
{
 	 "Id": "Notepad_respeaking_16000",
 	 "Name": "Notepad_respeaking_16000",
 	 "Version": "1.0.0"
[bookmark: _vknji7z52fp]	}
[bookmark: _gmhs2g7qlx49]}

[bookmark: 63gzyberhe2y][bookmark: _ja7vwqfxippr]Notification about preliminary results of processing
The notification contains a text with the preliminary results of processing. The text is not the final value that can be used for field filling. It is intended for showing the dynamics of recognition process. If the phrase is long, the user can see the intermediary result and know that the process of speech recognition is active.

[bookmark: _qb8jhjfvustd]Example of a returned value

{
 "MessageType": 9,
[bookmark: _ne62exev6kjq] "Data": "Some text"
[bookmark: _jc1y8yjzq8op]}

[bookmark: 8d3rbf7wdg9g][bookmark: _pea0wosc9xib]Notification about command activation
The notification contains a string with the identifier of a recognized command. After the notification is sent, the system expects the client to perform the action that matches the command.
[bookmark: _4vg3n8lk0bcs]Example of a returned value

[bookmark: _jhkvnodbzy9o]{
[bookmark: _rhqr84evlwng] "MessageType": 10,
[bookmark: _ifgpj13vtwis] "Data": "7d4565a7-b408-44d4-afc4-26b96a842446"
[bookmark: _h2xp9990j418]}

[bookmark: t40usxkda95z][bookmark: _jdp9krk5rxry]Notification about activation of enabling/disabling recognition command
Voice2Med application provides standard ways of enabling/disabling recognition mode: for example, hot key (double-clicking Ctrl) command or voice command. In case Voice2Med is connected to by API WebSocket 39999 port (ws://localhost:33999/), Voice2Med does not process such commands and sends them to the external client for processing through this API.
While processing these commands, the client can use its own logic of enabling/disabling recognition.
[bookmark: _4rng06oinyvj]Example of an enabling recognition message sent to the client

[bookmark: _68un0gv89zuk]{
[bookmark: _rassz0oo3tx3] "MessageType": 12
[bookmark: _ksp0v9kdeels]}

[bookmark: _a0x1ta1ke9et]Example of a disabling recognition message sent to the client

[bookmark: _ursukt5biqlq]{
[bookmark: _qg0o1pcu0dab] "MessageType": 13
[bookmark: _3110r0oo2yq1]}

[bookmark: 56hv5asf5xjw][bookmark: _tijmivux4o5q]Notification about changing current recognition mode
Notification about changing current recognition mode comes from the server (Voice2Med) to the client (HIS) at the moment of changing the recognition mode, for example, when the form metadata is successfully loaded.
[bookmark: _ayj0o81zde6h]Example of a returned value

{
 "MessageType": 0,
 "Data": {
	"Mode": 3,
[bookmark: _3byczmd59kz3]"State": 1,
[bookmark: _v554t1na9amj]	"Info": "a0bc1744-010c-4414-84e6-acabeff7b517"
[bookmark: _49hdm33395lp] }
[bookmark: _339i4ivl87yq]}

[bookmark: _92jfuh1gqglf]Description of classes, class fields and special requirements

	RecognitionModeInfo

	Class that contains the description of current recognition mode

	Field
	Field type
	Requirements
	Description

	Mode
	Int32
	Mandatory
	Recognition mode:
1 – voice activation.
2 – continuous recognition.
3 – form recognition.
4 – form recognition in VoiceWizard mode.

	Info
	String
	
	Recognized form identifier

	State
	Int32
	
	0 – launching.
1 – launched and works.
2 – stopped.

[bookmark: 77ftla24ckmr][bookmark: _agpqh05xsbq8]Notification about TTS status
TTS (Text-To-Speech) is the component that deals with speech synthesis. It synthesizes the voice confirmation sound of data recognition. Sometimes the server can send notifications about changing the status of the component. These notifications contain information about mistakes (for example, absence of a license for the component), the list of available voices, currently active voice and the speed of speech playback.

[bookmark: _iv4tff32ajom]Example of a returned value

[bookmark: _e109ns85ayx1]{
[bookmark: _1bps8vz2k75] "MessageType": 11,
[bookmark: _rxpjj0nk6ubk] "Data": {
	"VoiceList": [
[bookmark: _5eu9jbhv8064] {
[bookmark: _8fbp1u29uvz8] "Name": "Alexander"
[bookmark: _2v60vnst3dyr] }
[bookmark: _ea11v8h0v7wi]],
[bookmark: _ap7cv1giif8m]	"SelectedVoice": {
[bookmark: _ylsxno734as0] "Name": "Alexander"
[bookmark: _xrrb8qmz3te5] 	},
[bookmark: _ftg4yvxgw0a]	"Speed": 1,
[bookmark: _yal1ry5isiro]	"State": 0,
[bookmark: _ynsc8ocq6z5v] }
[bookmark: _99t5ntyw8lq3]
[bookmark: _fatndex761fu]}

You can also request information about the current status.
[bookmark: _qnbnnuxz8jsl]Example of a request to WebSocket
[bookmark: _jl6gnhjh0jbl]{
[bookmark: _gh3hqjpudewk] "MessageType": 11
[bookmark: _obia7py8rmku]}

[bookmark: _lwlpele785][bookmark: awfrung7q0ya][bookmark: _urpb0eek8aw4]Executing the request through WebSocket can be inconvenient as this request has synchronous logic and WebSocket implies asynchronous communication. Thus, you can get the list of themes through synchronous request to REST API. However, it is not mandatory.

Updating FormSettings
You can change some settings in process of recognition without restarting the process.
This request is used when the form recognition already started and you need to change the settings in process. Otherwise, the request will be ignored. There is no returned synchronized message.
[bookmark: _kyjuunjpsacx]Example of a request to WebSocket

[bookmark: _s34oaddwmilz]{
[bookmark: _mqxqb2vejgmk] "MessageType": 10,
 "Data": {
	"TtsFieldNameEnabled": true,
	"TtsFieldValueEnabled": false,
	"TtsTextFieldValueEnabled": true,
	"CyclicFocusNotificationEnabled": true,
	"WizardMode_TtsFullGroupNamingEnabled": false,
[bookmark: _enw3z2p4m9oe]	"WizardMode_IsAutoSwitchingEnabled": true,
[bookmark: _7j52i39yxp5p]	"WizardMode_IsAutoSwitchingEnabledForText": true
[bookmark: _legkl6tvbqwj] }
[bookmark: _yi72wqdoey81]}

[bookmark: _e3x3dw6pkalq][bookmark: _REST_API]REST API
Executing some requests through WebSocket can be inconvenient as these requests have synchronous logic and WebSocket implies asynchronous communication. Thus, you can use synchronous requests to REST API. It is not mandatory: if you need only one method of transportation, you can still use WebSocket.

[bookmark: _a6n87o49cxh2]Working with themes (language models)
[bookmark: 23hbfnihnhm3][bookmark: _f0vbfwnj2ekj]Getting the list of themes
URL: http://localhost:39256/api/Theme
Method: GET
Example of a response:
{
	"Data": [
 {
 "Id": "ct_2.5.45",
 "Name": "CT, MRI",
 "Version": "2.5.45"
 },
 {
 "Id": "main_2.3.13",
 "Name": "General",
 "Version": "2.3.13"
 },
 {
 "Id": "ultrasound_2.3.22",
 "Name": "Ultrasound",
 "Version": "2.3.22"
 },
 {
 "Id": "endoscopy_2.3.95",
 "Name": "Endoscopy",
 "Version": "2.3.95"
 	 }
[bookmark: _y16pcw3tj13i]],
[bookmark: _vkjbtsxoq9m3]	"Error": null
[bookmark: _ptuxjo8j6784]}

[bookmark: by1go5p4r7k3][bookmark: _d8fdwi4flnae]Working with catalogs

[bookmark: _te2qojsojxeg]Getting the list
URL: http://localhost:39256/api/Handbook
Method: GET
Parameters:
· showDeleted: type bool. GET parameter. False by default. Shows whether to return values marked as deleted.
Example of a response:
{
 "Data": [
 {
 "Id": "38d61a2b-cde8-4d17-b806-60c5fa8c8769",
 "Name": "Sex",
 "IsDeleted": false,
 "AvailableValues": [
 {
 "Key": "0",
 "Value": "Male"
 },
 {
 "Key": "1",
 "Value": "Female"
 }
]
 },
 {
 "Id": "bd58aa52-ebb9-4add-ab55-860c1b53d1c4",
 "Name": "One more catalog",
 "IsDeleted": true,
 "AvailableValues": [
 {
 	"Key": "0",
 	"Value": "First value"
 	},
 	{
 	"Key": "1",
 	"Value": "Second value"
 	}
]
	}
],
 "Error": null
[bookmark: _45nkcrqj226w]}
Deleting the catalog

URL: http://localhost:39256/api/Handbook
Method: DELETE
Parameters:
· id: string type. GET parameter. Identifier of a deleted record.
Example of a response:
{
"Data": false,
	"Error": null
[bookmark: _xd37yenzysmv]}
Data parameter returns true value, if the record was found and marked as deleted. False value, if the record with this id was not found.

[bookmark: _3z4nmhesu4jc]Catalogue recovery

URL: http://localhost:39256/api/Handbook/Restore
Method: POST
Parameters:
· id: string type. GET parameter. Identifier of a recovered record.
·
Example of a request:
{
"Data": false,
[bookmark: _k9ck4wsloobg]	"Error": null
[bookmark: _7iw2av81dwzm]}
Data parameter returns true value, if the record was found and recovered. False value, if the record with this id was not found.

[bookmark: _8wtmaplp82sk]Working with forms
[bookmark: _tz7623siul3]Getting the list
URL: http://localhost:39256/api/FromMetadata
Method: GET
Parameters:
· showDeleted: bool type. GET parameter. False by default. Shows whether to return values marked as deleted.
Example of a response (this example contains only one form without child elements)
{
	"Data": [
 {
 "ThemeId": null,
 "Mode": 1,
 "Key": "1c0202ad-6c5a-44bd-b963-25d9ce8e0bfe",
 "Childs": [...],
 "CustomCommands": [
 	{
 	"Key": "Previous_field",
 	"Value": "Previous field"
 	},
 	{
 	"Key": "Clear_field",
 	"Value": "Clear field"
 	},
 	{
 	"Key": "Next_field",
 	"Value": "Next field"
 	}
],
 	"CultureCode": "ru-RU",
 	"FormSettings": {
 	"TtsFieldNameEnabled": true,
 	"TtsFieldValueEnabled": true,
 	"TtsTextFieldValueEnabled": true,
 	"CyclicFocusNotificationEnabled": true,
 	"WizardMode_TtsFullGroupNamingEnabled": false,
 "WizardMode_IsAutoSwitchingEnabled": true,
 	"WizardMode_IsAutoSwitchingEnabledForText": true
 },
 "Name": "Form №1",
 "IsDeleted": false
 }
],
[bookmark: _8ocnr81tl0yj]	"Error": null
[bookmark: _g5ywjtfculhv]}
[bookmark: _gi23q8z3mdwe]Deleting

URL: http://localhost:39256/api/FromMetadata
Method: DELETE
Parameters:
· id: string type. GET parameter. Identifier of a deleted record.
Example of a response:
{
"Data": false,
	"Error": null
[bookmark: _jimgbyecn3ga]}
Data parameter returns true value, if the record was found and marked for deletion. False value, if the record with this id was not found.
[bookmark: _bx3f7uyz5rkb]Recovery

URL: http://localhost:39256/api/FromMetadata/Restore
Method: POST
Parameters:
· id: string type. GET parameter. Identifier of a recovered record.
Example of a response:
{
[bookmark: _71y4rcq9m7jd]"Data": false,
[bookmark: _alo27zo3dqyx]	"Error": null
[bookmark: _lht64zv9nxzq]}
Data parameter returns true value, if the record was found and recovered. False value, if the record with this id was not found.

[bookmark: kiuc8okzbtk][bookmark: _6bciwdj1ra6j]Working with TTS
[bookmark: _fy57mhek7rg9]Getting the current status of TTS
URL: http://localhost:39256/api/Tts
Method: GET
Example of a response:
{
 "Data": {
	"VoiceList": [{ "Name": "Alexander" }],
	"SelectedVoice": { "Name": "Alexander" },
	"Speed": 1,
[bookmark: _orki956ectkm]	"State": 0
[bookmark: _hq95spz1jtgj] },
[bookmark: _jovg18dpo3sp] "Error": null
[bookmark: _mr7bzblfv8gt]}

	TtsStateInfo

	Field
	Field type
	Description

	VoiceList
	List of voices
	

	SelectedVoice
	Chosen voice
	

	Speed
	Decimal
	Speed of playback

	State
	Int32
	Status:
0 - normal functioning.
1 - internal error, it is possible that TTS was installed incorrectly.
2 - license check error.

[bookmark: _19kfgmnb9frg]Working with field types
[bookmark: _btcb8sjky08g]Getting the list of available types
URL: http://localhost:39256/api/FormElementType
Method: GET
Parameters:
· showDeleted: bool type. GET parameter. False by default. Shows whether it is needed to return values marked as deleted.
Example of a response
{
	"Data": [
 	 {
 "Id": 1,
 "Name": "Boolean",
 "IsDeleted": false
 },
 {
 "Id": 2,
 "Name": "Integer",
 "IsDeleted": false
 },
 {
 "Id": 3,
 "Name": "Decimal",
 "IsDeleted": false
 },
 {
 "Id": 4,
 "Name": "Date",
 "IsDeleted": false
 },
 {
 "Id": 5,
 "Name": "Time",
 "IsDeleted": false
 },
 {
 "Id": 6,
 "Name": "Date and time",
 "IsDeleted": false
 }
],
	"Error": null
[bookmark: _tskiwvmieaki]}

[bookmark: _ceth9ko5ri79]Adding custom fields
URL: http://localhost:39256/api/FormElementType
Method: POST
Parameters are sent in Body:
{
	"Id": 465,
	"Name": "MyNewType",
[bookmark: _mbo580ocao2q]	"XmlGrammar": "<?xml version=\"1.0\" encoding=\"utf-8\"?> 	<grammar xml:lang=\"ru-RU\" root=\"Sex\" mode=\"voice\" version=\"1.0\" xmlns=\"http://www.w3.org/2001/06/grammar\" tag-format=\"semantics/1.0\"> <rule id=\"Sex\" scope=\"public\"> <one-of> 	<item>Male<tag>out='M.'</tag></item>	 <item>Female<tag>out='F.'</tag></item> </one-of></rule></grammar>"
[bookmark: _pbyczh44owgn]}
Id - int; identifier, more than 1000.
Name - string; name.
XmlGrammar - string; String with SRGS grammar. In tags, out variable will return the resulting recognized value.
[bookmark: _6s7faww1bp6h]Building SRGS grammar for the custom type is not a standard task. However, an experienced specialist can build the grammar according to the following standards:
1)	SRGS grammar: https://www.w3.org/TR/speech-grammar/;
2)	SISR semantic interpretation: https://www.w3.org/TR/semantic-interpretation/.
The tags format of semantic interpretation is limited to semantic/1.0 format.
Example of a response:
{
	"Data": [
 	 {
 "Id": 1,
 "Name": "Boolean",
 "IsDeleted": false
 },
 {
 "Id": 2,
 "Name": "Integer",
 "IsDeleted": false
 },
 {
 "Id": 3,
 "Name": "Decimal",
 "IsDeleted": false
 },
 {
 "Id": 4,
 "Name": "Date",
 "IsDeleted": false
 },
 {
 "Id": 5,
 "Name": "Time",
 "IsDeleted": false
 },
 {
 "Id": 6,
 "Name": "Date and tim",
 "IsDeleted": false
 }
[bookmark: _cw4pg6pas5gk]],
[bookmark: _wjhlkbwue01e]	"Error": null
[bookmark: _6f2b5my58kkz]}

[bookmark: _nhdeoom8ze61]Deleting

URL: http://localhost:39256/api/FormElementType
Method: DELETE
Parameters:
· id: string type. GET parameter. Identifier of a deleted record.
Example of a response:
{
[bookmark: _srguge7x6m3q]"Data": false,
[bookmark: _7azc5poz7h3w]	"Error": null
[bookmark: _uhotf6v2lv90]}
Data parameter returns true value, if the record was found and marked for deletion. False value, if the record with this id was not found.

[bookmark: _gnrsr54okn7] Recovery

URL: http://localhost:39256/api/FormElementType/Restore
Method: POST
Parameters:
· id: string type. GET parameter. Identifier of a recovered record.
·
Example of a response:
[bookmark: _hq3dumm0an9e]{
[bookmark: _g2ng3bmoflzd]"Data": false,
[bookmark: _np7cu62jk68y]	"Error": null
[bookmark: _aa85p0ml7h1f]}
Data parameter returns true value, if the record was found and recovered. False value, if the record with this id was not found.

001-300919

1
image3.png
o narpysn

Hasusme crpaxosiu

@

Mnanosas gara creayowero ocmorpa:

Onucarive:

20122018

fyec:

Doenenve.

B

ey |

Mlocne vamya:

fyec:

135

Doenenve.

[|

Terer

image1.png
Pronouncesthe command for form filling

Sending metadata of the filled form
Object: Message<FormMetadata>

_ Notification about changing recogni
Object: Message <RecognitionMode>

in key-value format
where key is a field name

Filling the field
with received
value

Message informing that you need to fill
specified field with specified value

~ - Object: Message<FormElementMetadata> — -

ithout value for setting focus

Object: Message<Elementinfo>

Message about finishing form filling-

<~ Notification about changing recognition mode- —

Producing grammars
using form metadata,
switching to form
filling mode.

Recognizing key
(by field name)
and value

image2.png
1 field that
ey
= -Chills
Form contains more. ~CultureCode.
than one child
(form elements)
ValuedFormElementMetadata
ey
- Synonyms
~Type
- Childs.
ey
- Synonyms
4
ey
- Synonyms
- Childs.

Container with more than one child
(form elements)

